查看原文
其他

微生物培养的福音:一个直接用16S rDNA序列来预测其培养基配方的网站!!!

2016-01-11 卢瑟菌 微生物生态

↑↑点上面蓝色小字 | 关注↑↑

本文内容原创

【如需转载,请在后台留下您的公众号,

获得授权后方可转载】


今天卢瑟菌给大家隆重推出一个超级好的网站,网站名字叫KOMODO(Known Media Database)没错,网站作者就是严(tiao)肃(pi)地把科莫多巨蜥的照片放在了网站主页,见下图1左上角。言归正传,这个网站的神奇之处就在于可以根据细菌或古菌16S rDNA的序列来预测培养该菌的培养基配方!文章发表在2015年10月13号的Nature communication上[1],见下图2



图1 KOMODO网站主页截图



图2 15年10月发表在NC上的微生物培养基预测文章


1. 该网站的意义

这是个很了不起的工作,说他了不起是因为目前环境中的微生物绝大多数(90%~99%)是不可培养的[2],因对不同微生物培养条件(尤其是培养基配方)的不了解,阻碍了微生物的分离培养。随着高通量测序技术的发展,目前有大量文章是在做基于16S rDNA的微生物非培养多样性,但拿不到菌种使得目标微生物的应用和机理研究成为空中楼阁。有了这个网站就可以有依据的预测目标微生物的培养基配方了。因此可将基于16S rDNA的微生物多样性数据与目标菌株的分离培养有机衔接起来,大大加速从生态研究到微生物资源挖掘的进程,研究思路如下图3



图3 KOMODO将非培养的16S rDNA多样性研究与目标微生物分离有机结合起来



2. 该网站的原理

该网站结合了NCBI的微生物分类和微生物培养基数据库(DSMZ)等(图4A),依据传递预测模式(Transitive prediction schema),即若微生物A和B均可利用培养基1、微生物B和C可利用培养基2,微生物C可利用培养基3,那么依次传递推理,微生物A应该也可以利用培养基3(图4B);和协同过滤预测(collaborative filtering predictor),即根据16S rDNA的系统进化相似性,根据已知培养基的物种来推断其相似性高的近缘物种的培养基(图4C)。



图4 KOMODO网站工作原理


3. 该网站的用法

(1) 打开链接(http://delta-tomcat-vm.cs.tau.ac.il:40678/komodo/growrec.htm)进入KOMODO页面,如下:



(2) 输入相应内容后,点击提交。如下图以某石油降解菌的16S rDNA为例。


内容填写时注意

Is organism Aerobic (Yes|No|Unknown):根据实际情况填写物种的需氧情况,只能填YesNoUnknown

Does Organism grow in Saltly Media (Yes|No|Unknown): 根据实际情况填写物种的盐度情况,只能填写YesNoUnknown

Maximal phylogenetic distance (range:0.0 - 1.0, default:0.04):可输入0-1之间的数字,一般默认即可。

NCBI taxon ID (optional parameter - can be replaced by 16S data):和下面的16S data (optional parameter - can be replaced by NCBI Taxon ID):两者只能输入一个,建议最好直接在16S data右边的框里输入FASTA格式的序列即可。

Blast 'Identities' Low Limit % 表示与你16S序列相似的最低限是多少,默认85%,可根据实际情况适当提高。

如上图中,填写完整后,点击左下角“submit”提交后等几分钟即可得预测结果,如下图:



网站会根据你填写的信息给出推荐的不同培养基,如上图例子中给出了四种培养基,点击培养基对应的链接可以直接下载PDF版的培养基配方,如下图PDF版推荐培养基示例:


哦,对了,网站的作者很欢(dou)乐(bi),因为,如果你输错了参数就会出现下面的一幕。。。。。



参考文献:

[1] Oberhardt M A, Zarecki R, Gronow S, et al. Harnessing the landscape of microbial culture media to predict new organism-media pairings[J]. Nature communications, 2015, 6.

[2] Schleifer K H. Microbial diversity: facts, problems and prospects[J]. Systematic and applied microbiology, 2004, 27(1): 3-9.


答谢:

感谢微生物物种分类领域的专家刘阳博士对此文章的推荐 ,欢迎各位专家同仁积极推荐优秀文章或撰写投稿~




这里是“微生物生态”,“科学思想值得传播”,欢迎转载!

长按扫描下方二维码关注我们:



您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存